62 research outputs found

    High-throughput sequence alignment using Graphics Processing Units

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and <it>de novo </it>genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies.</p> <p>Results</p> <p>This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies.</p> <p>Conclusion</p> <p>MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.</p

    An investigation of latency prediction for NoC-based communication architectures using machine learning techniques

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Due to the increasing number of cores in Systems on Chip (SoCs), bus architectures have suffered with limitations regarding performance. As applications demand higher bandwidth and lower latencies, buses have not been able to comply with such requirements due to longer wires and increased capacitance. Facing this scenario, Networks on Chip (NoCs) emerged as a way to overcome the limitations found in bus-based systems. Fully exploring all possible NoC characteristics settings is unfeasible due to the vast design space to cover. Therefore, some methods which aim to speed up the design process are needed. In this work, we propose the use of machine learning techniques to optimise NoC architecture components during the design phase. We have investigated the performance of several different ML techniques and selected the Random Forest one targeting audio/video applications. The results have shown an accuracy of up to 90% and 85% for prediction involving arbitration and routing protocols, respectively, and in terms of applications inference, audio/video achieved up to 99%. After this step, we have evaluated other classifiers for each application individually, aiming at finding the adequate one for each situation. The best class of classifiers found was the Tree-based one (Random Forest, Random Tree, and M5P) which is very encouraging, and it points to different approaches from the current state of the art for NoCs latency prediction

    Genetic variability in CYP3A4 and CYP3A5 in primary liver, gastric and colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-metabolizing enzymes play a role in chemical carcinogenesis through enzymatic activation of procarcinogens to biologically reactive metabolites. The role of gene polymorphisms of several cytochrome P450 enzymes in digestive cancer risk has been extensively investigated. However, the drug-metabolizing enzymes with the broader substrate specificity, CYP3A4 and CYP3A5, have not been analyzed so far. This study aims to examine associations between common CYP3A4 and CYP3A5 polymorphisms and digestive cancer risk.</p> <p>Methods</p> <p>CYP3A4 and CYP3A5 genotypes were determined in 574 individuals including 178 patients with primary liver cancer, 82 patients with gastric cancer, 151 patients with colorectal cancer, and 163 healthy individuals.</p> <p>Results</p> <p>The variant allele frequencies for patients with liver cancer, gastric cancer, colorectal cancer and healthy controls, respectively, were: <it>CYP3A4*1B</it>, 4.8 % (95% C.I. 2.6–7.0), 3.7 % (0.8–6.6) 4.3% (2.0–6.6) and 4.3% (2.1–6.5); <it>CYP3A5*3</it>, 91.8 % (93.0–97.4), 95.7% (92.6–98.8), 91.7% (88.6–94.8) and 90.8% (87.7–93.9). The association between <it>CYP3A4*1B </it>and <it>CYP3A5*3 </it>variant alleles did not significantly differ among patients and controls. No differences in genotypes, allele frequencies, or association between variant alleles were observed with regard to gender, age at diagnosis, tumour site or stage.</p> <p>Conclusion</p> <p>Common polymorphisms on <it>CYP3A4 </it>and <it>CYP3A5 </it>genes do not modify the risk of developing digestive cancers in Western Europe.</p

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Arbitration Logic

    No full text

    Link-Level Flow Control and Buffering

    No full text

    On the relation between network throughput and delay curves

    No full text
    corecore